Measurement of Top Pair Production with the ATLAS Detector

Bobby Acharya
(ATLAS group
Udine/ICTP/INFN)

For the ATLAS collaboration

Commissioning ATLAS with Top Quarks

- Top Pair X-section is large at the LHC (830 pb +- 100pb)
- Semi-Leptonic Tops have final states consisting of Jets, Leptons, Missing ET
 - Measuring Top Quarks involves all the major components of the ATLAS detector
- If we can obtain a reasonable (20%?) Top X-section measurement with the first good dataset (100 pb-1) then ATLAS will be in excellent shape
 - The measurement represents a major stepping stone to new physics
- Need an analysis which does NOT necessarily
 - rely on b-tagging
 - rely on a precise understanding of the Jet Energy scale
- Today present the results of the ATLAS Top pair X-section Commissioning Analysis which will appear as an ATLAS CSC (Computer System Commissioning) note
- Will discuss how new physics affects the X-section

the ATLAS Experiment

 $b^{1/3}$

- 4 Jets
- 1 Lepton
- ETMiss

Commissioning ATLAS with Top

- Selection A: "Commissioning Analysis":
 - Analyse Semi-Electronic TTBar channel
 - Electron Trigger (e25i) L1, L2, EF
 - $-P_T(e,v) > 20 \text{ GeV}$
 - 3 jets with $P_T > 40 \text{ GeV}$
 - $A 4^{th}$ jet with $P_T > 20 \text{ GeV}$
 - $|-|\eta(lep)| < 2.5, |\eta(jet)| < 2.5$
 - Top reconstructed as the 3-jet combination with highest vector sum PT
- Selection B: A plus W-mass cut:
 - Require that of the 3-jets there is a pair
 whose mass is within 10 GeV of W-mass

Commissioning ATLAS with Top

- Author: e-gamma
- 'medium' (isem & 0x3FF =0)
- pT > 20 GeV/c
- $|\eta| < 2.5$
- 1:37 < $|\eta|$ < 1:52 excluded
- ETcone20 < 6 GeV</p>
 - Cone 0.4 Tower Jets
 - pT > 20 GeV/c
 - $|\eta| < 2.5$
 - \triangle R (jet, μ or e) > 0.4

Summary Plots and Results

Top peak is **clearly** visible above the major backgrounds with 100 pb⁻¹ of data!

Method and Samples

$$\sigma_{ttbar} = \frac{N_{S+B} - N_{B}}{A\varepsilon \int dt L}$$

- Method Used: Counting Experiment. No need to rely on shapes of kinematical distributions.
- Used two sets of Monte Carlo Samples, D and M
 - Sample D represents "DATA"
 - Sample M represents "Monte Carlo"
 - Both D and M include the TTBar signal plus the major backgrounds to it
 - ullet D is used to obtain N_{S+B}
 - M is used to obtain A, ε , and N_B
- ALL Samples considered are Full Simulation and are thoroughly validated by ATLAS

D and M Samples used

• TTBar samples: MC@NLO and ACERMC

• different MC's give estimate of MC uncertainties

•

• W+Jets: Alpgen, Herwig, Pythia

• Z+Jets: Alpgen, Herwig, Pythia

• Single Top: MC@NLO and ACERMC

• New Physics: Pythia

- Normalisation of W+Jets Background
- Use the Ratio of W and Z X-sections:

$$\frac{\sigma(W)}{\sigma(W+nj)}$$
 ~ $\frac{\sigma(Z)}{\sigma(Z+nj)}$

Measure from Data

• We have considered the effect of different W normalisations.

Summary of electron analysis

sample	No W cut	W cut
TTbar	2532,3	1244.3
Zee+jets	67.9	21,7
Zττ+jets	19.3	5.0
Zμμ+jets	-	-
Single top (t-channel)	100.4	27.4
Single top (s.channel)	1.4	0.3
Single top Wt	65.9	35.5
W+jets	582.8	173.6
Total Bkgd	837.7	263.5

	S/B	Αε(%)
Sel A	3	5,5
Sel B	4.7	2,7

$$L = 100 \text{ pb}^{-1}$$

Distributions with all backgrounds

	X-sec (pb)
Sel A	860.0±2.5%
Sel B	814.1±3.4%

New Physics Background to TTBar

- Many models of new physics (Susy, Xtra dim, Technicolor, little Higgs,)
- Most reasonable models have significant top activity
 - New Particles with strong couplings to Top Quarks
 - Usually to cancel the Higgs Mass Divergence from Top
- How can we evaluate their impact?
 - Strategy: Consider what is possibly the worst case scenario:
 - A new particle which decays exclusively into Top Pairs
 - This is the case which we can expect will have the largest background to ttbar
 - X-section for new physics typically a few pb
 - ~ 500 events in 100 pb-1
 - High trigger rate
 - Standard Model gives ~ 2500 of ttbar signal events after selection A, so in principle new physics can be significant for the x-section measurement

Simulation of New Physics

- Want a full simulation sample with X -> ttbar
- Can use Z' -> ttbar samples
 - CSC sample 1TeV Z' -> ttbar
 - Note: the actual x-section for this is 0.19pb, but this assumes that Z' decays into all the other fermions.
 - The worst case scenario is a particle which decays exclusively into ttbar.
 - So we can rescale the x-section of this sample to a nominal 5pb to take this into account.
 - 500 events in 100 pb-1

Z' Efficiencies Compared to TTbar %

Sample	L1_EM25	L2_e25i	EF_e25i	Sel A	Sel B
TTBar	38.29	25.83	22.25	5.51	2.68
Z' 1TeV	36.43	26.83	23.40	10.07	4.08

- Trigger efficiency similar
- Higher acceptance due to higher jet/lepton PT's

Results

sample	L1_e25	L2_e25i	EF_e25i
TTBar	38.13 %	25.75 %	22.17 %
Z' 1TeV	36.43 %	26.83 %	23.40 %

Very Small Effect
-- 1% or so

sample	No W cut	W cut
TTbar	2532,3	1244.3
Zee+jets	67.9	21,7
Zττ+jets	19.3	5.0
Zμμ+jets	•	-
Single top (t-channel)	100.4	27.4
Single top (s.channel)	1.4	0.3
Single top Wt	65.9	35.5
W+jets	582.8	173.6
Z' 1TeV	28.0	11.32
Total B	865.7	274.82

AcerMC vs MC@NLO

	MC@NLO (%)	AcerMC (%)
Trig 1	38.1	37.6
Trig 2	25.8	25.7
Trig 3	22.2	22.2
Lept sel	17.0	17.3
MET	15.5	15.7
4jets>20	7.7	8.3
3jets>40	5.5	6.2
Wmass	2.7	2.85

Syst. error on the efficiencies sel A 12%, sel B 5%

Statistical and systematic Uncertainties on x-sec

source	Sel A Systematic (%)	Sel B Systematic (%)	
$\Delta\sigma/\sigma$ (stat)	2.4%	3.2%	
Δσ/σ W+jets norm	7.8%	4.3%	
Δ σ/σ JES(+5%)	0.7%	0.2%	
MC systematic	12%	5%	
ΔL/L luminosity	20%	20%	
Total	(22.9 + 20)%	(12.7+ 20)%	

Note: can use Z --> ee or μ,μ to estimate L much better than 20%

Conclusions and Outlook

- Top Physics is a major stepping stone between commissioning and new physics
- Have developed a simple early analysis strategy for commissioning ATLAS with Top Pairs, based on the isolated electron or muon triggers

• Have estimated all the major backgrounds (except QCD multijet, which is almost done)

including new physics,
which we showed to be
negligible for the
standard model
TTbar cross-section (at least
for resonances decaying to Ttbar

Conclusions and Outlook

- Improve W+Jets normalisation?
- Develop a commissioning analysis without Missing ET?
 - -- If this works, can use a top rich data sample to Commission Missing ET

• Analyse the possibility for detecting new physics (eg resonances decaying to tops) with the very early data

Backup

Optimistic Case: With b-tagging

How does this analysis change with b-tagging?

Mtop Selection A

Mtop with central jets, Sel A

Mtop, Selection B

Effects of requiring a b-tag, Sel A

	N _{top}	N _{w+jets}	N singletop	N _{Z+jets}	S/B	ε(%)
No b- tag	2538. 2	591,3	169,2	87,2	3,0	5,5
1 and only 1 tag	1231. 8	51.4	76	?	16,2	2,7
1 or 2 tags	1968. 7	55,4	116,0	?	17,4	4,4
2 and only 2 tags	737.7	4	37,6	?	19.5	1,7

Enriching top purity

- Two examples:
 - Require 3 leading jets to be central
 - Apply a cut on cosθ* (Angle between the i-th jet and the beam direction in the rest system of the total event (I+v+ jets)

